Related Publications

PACOG:

  • R. A. Akmaev, J. M. Forbes, F.-J. Lübken, D. J. Murphy, and J. Höffner. Tides in the mesopause region over Antarctica: Comparison of Whole Atmosphere Model simulations with ground-based observations. J. Geophys. Res., 121:1156–1169, 2016.
  • G. Baumgarten, J. Fiedler, J. Hildebrand, and F.-J. Lübken. Inertia gravity wave in the stratosphere and mesosphere observed by Doppler wind and temperature lidar. Geophys. Res. Lett., 42:10,929–10,936, 2015.
  • E. Becker. Mean-flow effects of thermal tides in the mesosphere and lower thermosphere. J. Atmos. Sci., 2016. submitted
  • J. L. Chau, P. Hoffmann, N. M. Pedatella, V. Matthias, and G. Stober. Upper mesospheric lunar tides over middle and high latitudes during sudden stratospheric warming events. J. Geophys. Res., 120:3084–3096, 2015.
  • D. C. Fritts, L. Wang, G. Baumgarten, A. D. Miller, M. A. Geller, G. Jones, M. Limon, D. Chapman, J. Didier, C. B. Kjellstrand, D. Araujo, S. Hillbrand, A. Korotkov, G. Tucker, and J. Vinokurov. High-resolution observations and modeling of turbulence sources, structures, and intensities in the upper mesosphere. J. Atmos. Solar-Terr. Phys., 2016. submitted.
  • T. Fuller-Rowell, T.-W. Fang, H. Wang, V. Matthias, P. Hoffmann, K. Hocke, and S. Studer. Impact of migrating tides on electrodynamics during the January 2009 sudden stratospheric warming. In Ionospheric Space Weather: Longitude Dependence and Lower Atmosphere Forcing. ..., 2016. accepted.
  • A. Gassmann. Entropy production due to subgrid-scale thermal fluxes in breaking gravity waves. J. Atmos. Sci., 2016. submitted.
    R. S. Lieberman, D. M. Riggin, V. Nguyen, S. E. Palo, D. E. Siskind, N. J. Mitchell, G. Stober, S. Wilhelm, and N. J. Livesey. Global observations of two-day wave coupling to the diurnal tide. J. Geophys. Res., 2016. submitted.
  • M. Gerding, K. Baumgarten, J. Höffner, and F.-J. Lübken. Lidar soundings between 30 and 100 km altitude during day and night for observation of temperatures, gravity waves and tides. EPJ Web of Conferences, 119:13001, 2015.
  • M. Gerding, M. Kopp, J. Höffner, K. Baumgarten und F.-J. Lübken, Mesospheric temperature soundings with the new, daylight-capable IAP RMR lidar, Atmos. Meas. Tech., 9(8), 3707-3715, doi:10.5194/amt-9-3707-2016, 2016
  • M. Kopp, M. Gerding, J. Höffner, and F.-J. Lübken. Tidal signatures in temperatures derived from daylight lidar soundings above Kühlungsborn (54°N, 12°E). J. Atmos. Solar-Terr. Phys., pages 37–50, 2015.
  • F. I. Laskar, J. L. Chau, G. Stober, P. Hoffmann, C. M. Hall, and M. Tsutsumi. Quasi biennial oscillation modulation of the middle- and high-latitude mesospheric semidiurnal tides during August - September. J. Geophys. Res., 121:4869–4879, 2016.
  • V. Matthias, T. G. Shepherd, P. Hoffmann, and M. Rapp. The hiccup: A dynamical coupling process during the autumn transition in the Northern Hemisphere - similarities and differences to sudden stratospheric warmings. Ann. Geophys., 33:199–206, 2015.
  • V. Matthias, A. Dörnbrack, and G. Stober. The extraordinary strong and cold polar vortex in the early northern winter 2015/16, Geophys. Res. Lett., 43, 12287-12294, doi:10.1002/2016GL071676, 2016.
  • M. Placke, P. Hoffmann, R. Latteck, and M. Rapp. Gravity wave momentum fluxes from MF and meteor radar measurements in the polar MLT region. J. Geophys. Res., 120:736–750, 2015.
  • M. Placke, P. Hoffmann, and M. Rapp. First experimental verification of summertime mesospheric momentum balance based on radar wind measurements at 69°N. Ann. Geophys., 33:1091–1096, 2015.
  • G. Stober, V. Matthias, C. Jacobi, S. Wilhelm, J. Höffner und J. L. Chau, Exceptionally strong summer-like zonal wind reversal in the upper mesosphere during winter 2015/16, Ann. Geophys., accepted, 2017.

SI:

  • Wei, J., F. Zhang & J. H. Richter, 2016: An Analysis of Gravity Wave Spectral Characteristics in Moist Baroclinic Jet–Front Systems. J. Atmos. Sci. 73, 8: 3133-3155. doi:10.1175/jas-d-15-0316.1


ICON:

 

Publications_a

3DMSD:

  • Bölöni, G.,  Ribstein, B., Muraschko, J., Sgoff, C., Wei, J. and U. Achatz 2016: The interaction between atmospheric gravity waves and large-scale flows: an efficient description beyond the non-acceleration paradigm. J. Atmos. Sci. vol. 73 (2016), pp. 4833–4852  pdf
  • Ribstein, B. and  U. Achatz 2016: The interaction between gravity waves and solar tides in a linear tidal model with a 4D ray-tracing gravity-wave parameterization. J. Geophys. Res., 121, doi:10.1002/2016JA022478
  • Ribstein, B., U. Achatz, and F. Senf 2015: The interaction between gravity waves and solar tides: Results from 4-D ray tracing coupled to a linear tidal model, J. Geophys. Res. Space Physics, 120, 6795–6817, doi:10.1002/2015JA021349.
  • Achatz, U., Ribstein, B., Senf, F., and Klein, R. 2016: The interaction  between synoptic-scale balanced flow and a finite-amplitude mesoscale wave field throughout all atmospheric layers: Weak and moderately strong  stratification. Q. J. R. Met. Soc. vol. 143 (2017), pp. 342–361 abstract

SV:

  • Trinh, Q. T., Kalisch, S., Preusse, P., Ern, M., Chun, H.–Y., Eckermann, S. D., Kang, M.–J., and Riese, M.:
    Tuning of a convective gravity wave source scheme based on HIRDLS observations,
    Atmos. Chem. Phys., 16, 7335-7356, doi:10.5194/acp-16-7335-2016, 2016. pdf
  • Ern, M., Trinh, Q. T., Kaufmann, M., Krisch, I., Preusse, P., Ungermann, J., Zhu, Y., Gille, J. C., Mlynczak, M. G., Russell III, J.
    M., Schwartz, M. J., and Riese, M.: Satellite observations of middle atmosphere gravity wave absolute momentum flux and of its vertical gradient during recent stratospheric warmings, Atmos. Chem. Phys., 16, 9983-10019, doi:10.5194/acp-16-9983-2016, 2016. pdf
  • Ern, M., L. Hoffmann, and P. Preusse (2017), Directional gravity wave momentum fluxes in the stratosphere derived from high-resolution AIRS temperature data, Geophys. Res. Lett., 44, 475-485, doi:10.1002/2016GL072007. pdf
  • Kalisch, S., H.-Y. Chun, M. Ern, P. Preusse, Q. T. Trinh, S. D. Eckermann, and M. Riese (2016), Comparison of simulated and observed convective gravity waves, J. Geophys. Res. Atmos., 121, 13474–13492, doi:10.1002/2016JD025235. pdf
  • Ehard, B., B. Kaifler, A. Dörnbrack, P. Preusse, S. Eckermann, M. Bramberger, S. Gisinger, N. Kaifler, B. Liley, J. Wagner, and M. Rapp, 2017: Horizontal propagation of large amplitude mountain waves in the vicinity of the polar night jet. J. Geophys. Res. Atmos., pp. 1423–1436, doi:10.1002/2016JD025621. (PACOG, SV cooperation)

PACOG:

  • R. A. Akmaev, J. M. Forbes, F.-J. Lübken, D. J. Murphy, and J. Höffner. Tides in the mesopause region over Antarctica: Comparison of Whole Atmosphere Model simulations with ground-based observations. J. Geophys. Res., 121:1156–1169, 2016.
  • G. Baumgarten, J. Fiedler, J. Hildebrand, and F.-J. Lübken. Inertia gravity wave in the stratosphere and mesosphere observed by Doppler wind and temperature lidar. Geophys. Res. Lett., 42:10,929–10,936, 2015.
  • J. L. Chau, P. Hoffmann, N. M. Pedatella, V. Matthias, and G. Stober. Upper mesospheric lunar tides over middle and high latitudes during sudden stratospheric warming events. J. Geophys. Res., 120:3084–3096, 2015.
  • Ehard, B., B. Kaifler, A. Dörnbrack, P. Preusse, S. Eckermann, M. Bramberger, S. Gisinger, N. Kaifler, B. Liley, J. Wagner, and M. Rapp, 2017: Horizontal propagation of large amplitude mountain waves in the vicinity of the polar night jet. J. Geophys. Res. Atmos., pp. 1423–1436, doi:10.1002/2016JD025621. (PACOG, SV cooperation)
  • Ehard, B., Kaifler, B., Kaifler, N., and Rapp, M.: Evaluation of methods for gravity wave extraction from middle-atmospheric lidar temperature measurements, Atmos. Meas. Tech., 8, 4645-4655, doi:10.5194/amt-8-4645-2015, 2015. abstract
  • M. Gerding, K. Baumgarten, J. Höffner, and F.-J. Lübken. Lidar soundings between 30 and 100 km altitude during day and night for observation of temperatures, gravity waves and tides. EPJ Web of Conferences, 119:13001, 2015.
  • B. Kaifler, F.-J. Lübken, J. Höffner, R. J. Morris, and T. P. Viehl. Lidar observations of gravity wave activity in the middle atmosphere over Davis (69°S, 78°E), Antarctica. J. Geophys. Res., pages 4506–4521, 2015.
  • M. Kopp, M. Gerding, J. Höffner, and F.-J. Lübken. Tidal signatures in temperatures derived from daylight lidar soundings above Kühlungsborn (54°N, 12°E). J. Atmos. Solar-Terr. Phys., pages 37–50, 2015.
  • F. I. Laskar, J. L. Chau, G. Stober, P. Hoffmann, C. M. Hall, and M. Tsutsumi. Quasi biennial oscillation modulation of the middle- and high-latitude mesospheric semidiurnal tides during August - September. J. Geophys. Res., 121:4869–4879, 2016.
  • F.-J. Lübken, R. Latteck, E. Becker, J. Höffner, and D. Murphy. Using polar mesosphere summer echoes and stratospheric/mesospheric winds to explain summer mesopause jumps in Antarctica. J. Atmos. Solar-Terr. Phys., 2016.
  • V. Matthias, T. G. Shepherd, P. Hoffmann, and M. Rapp. The hiccup: A dynamical coupling process during the autumn transition in the Northern Hemisphere - similarities and differences to sudden stratospheric warmings. Ann. Geophys., 33:199–206, 2015.
  • M. Placke, P. Hoffmann, R. Latteck, and M. Rapp. Gravity wave momentum fluxes from MF and meteor radar measurements in the polar MLT region. J. Geophys. Res., 120:736–750, 2015.
  • M. Placke, P. Hoffmann, and M. Rapp. First experimental verification of summertime mesospheric momentum balance based on radar wind measurements at 69°N. Ann. Geophys., 33:1091–1096, 2015.
  • A. Schneider, M. Gerding, and F.-J. Lübken. Comparing turbulent parameters obtained from LITOS and radiosonde measurements. Atmos. Chem. Phys., 15:2159–2166, 2015.
  • J. S. Wagner, A. Dörnbrack, M. Rapp, S. Gisinger, B. Ehard, M. Bramberger, B. Witschas, F. Chouza-Keil, S. Rahm, C. Mallaun, G. Baumgarten, and P. Hoor. The impact of model resolution on simulation of mountain waves during the Gravity Wave Life Cycle I campaign. Atmos. Chem. Phys. Discuss., 2016. submitted.

more: Related Publications

Publications

Publications which came out of MS-GWaves

 

2022:

  • Borchert et al: Three-dimensional static instability of gravity waves and a possible parameterization of the associated wave breaking (accepted at AMS)
  • Becker, E., Vadas, S. L., Bossert, K., Harvey, V. L., Zülicke, C., & Hoffmann, L. (2022). A High-resolution whole-atmosphere model with resolved gravity waves and specified large-scale dynamics in the troposphere and stratosphere. Journal of Geophysical Research: Atmospheres, 127, e2021JD035018. https://doi.org/10.1029/2021JD035018
  • Charuvil Asokan, H., Chau, J. L., Larsen, M. F., Conte, J. F., Marino, R., Vierinen, J., and Borchert, S. (2022). Validation of multistatic meteor radar analysis using modeled mesospheric dynamics: An assessment of the reliability of gradients and vertical velocities. Journal of Geophysical Research: Atmospheres, 127, e2021JD036039. https://doi.org/10.1029/2021JD036039
  • Charuvil Asokan, H., Chau, J.L., Marino, R., Vierinen, J., Vargas , F., Urco J.M., Clahsen, M. and Jacobi, C. (2022 . Frequency spectra of horizontal winds in the mesosphere and lower thermosphere region from multistatic specular meteor radar observations during the SIMONe 2018 campaign. Earth Planets Space 74, 69 (2022). https://doi.org/10.1186/s40623-022-01620-7
  • Dörnbrack, A., Eckermann, S. D., Williams, B. P., & Haggerty, J. (2022). Stratospheric Gravity Waves Excited by a Propagating Rossby Wave Train—A DEEPWAVE Case Study, Journal of the Atmospheric Sciences, 79(2), 567-591. https://doi.org/10.1175/JAS-D-21-0057.1
  • Gisinger, S., I. Polichtchouk, A. Dörnbrack, R. Reichert, B. Kaifler, N. Kaifler, M. Rapp, and I. Sandu, 2022: Gravity-Wave-Driven Seasonal Variability of Temperature Differences between ECMWF IFS and Rayleigh Lidar Measurements in the Lee of the Southern Andes, Journal of Geophysical Research: Atmospheres, 127, e2021JD036270. https://doi.org/10.1029/2021JD036270
  • Kruse, C. G., Alexander, M. J., Hoffmann, L., van Niekerk, A., Polichtchouk, I., Bacmeister, J. T., Holt, L., Plougonven, R., Šácha, P., Wright, C., Sato, K., Shibuya, R., Gisinger, S., Ern, M., Meyer, C. I., & Stein, O. (2022). Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage, Journal of the Atmospheric Sciences, 79(4), 909-932. https://doi.org/10.1175/JAS-D-21-0252.1

2021:

  • Bölöni, G., Kim, Y., Borchert, S., & Achatz, U. (2021). Toward Transient Subgrid-Scale Gravity Wave Representation in Atmospheric Models. Part I: Propagation Model Including Nondissipative Wave–Mean-Flow Interactions, Journal of the Atmospheric Sciences, 78(4), 1317-1338, https://doi.org/10.1175/JAS-D-20-0065.1
  • Ern, M., Diallo, M., Preusse, P., Mlynczak, M. G., Schwartz, M. J., Wu, Q., and Riese, M.: The semiannual oscillation (SAO) in the tropical middle atmosphere and its gravity wave driving in reanalyses and satellite observations, Atmos. Chem. Phys., 21, 13763-13795, https://doi.org/10.5194/acp-21-13763-2021, 2021.
  • Dörnbrack, A. (2021). Stratospheric Mountain Waves Trailing across Northern Europe, Journal of the Atmospheric Sciences, 78(9), 2835-2857. https://doi.org/10.1175/JAS-D-20-0312.1
  • Geldenhuys, M., Preusse, P., Krisch, I., Zülicke, C., Ungermann, J., Ern, M., Friedl-Vallon, F., and Riese, M.: Orographically induced spontaneous imbalance within the jet causing a large-scale gravity wave event, Atmos. Chem. Phys., 21, 10393–10412, https://doi.org/10.5194/acp-21-10393-2021, 2021
  • Gupta, A., Birner, T., Dörnbrack, A., & Polichtchouk, I. (2021). Importance of gravity wave forcing for springtime southern polar vortex breakdown as revealed by ERA5. Geophysical Research Letters, 48, e2021GL092762. https://doi.org/10.1029/2021GL092762
  • Harlander,U. & M. V. Kurgansky (2021): Two-dimensional internal gravity wave beam instability. Linear theory and subcritical instability, Geophysical & Astrophysical Fluid Dynamics, https://doi.org/10.1080/03091929.2021.1943379
  • Kim, Y.-H., & Achatz, U. (2021). Interaction between stratospheric Kelvin waves and gravity waves in the easterly QBO phase. Geophysical Research Letters, 48, e2021GL095226. https://doi.org/10.1029/2021GL095226
  • Kim, Y., Bölöni, G., Borchert, S., Chun, H., & Achatz, U. (2021). Toward Transient Subgrid-Scale Gravity Wave Representation in Atmospheric Models. Part II: Wave Intermittency Simulated with Convective Sources, Journal of the Atmospheric Sciences, 78(4), 1339-1357. https://doi.org/10.1175/JAS-D-20-0066.1
  • Le Gal, P., Harlander, U., Borcia, I., Le Dizès, S., Chen, J., & Favier, B. (2021). Instability of vertically stratified horizontal plane Poiseuille flow. Journal of Fluid Mechanics, 907, R1. https://doi.org/10.1017/jfm.2020.917
  • Lübken. F.-J., Baumgarten, G. and Berger, U. (2021): Long term trends of mesopheric ice layers: A model study, J. Atmos. Solar-Terr. Phys., 105378, doi:10.1016/j.jastp.2020.105378, 2021.
  • Lübken, F.-J. and Höffner, J.: VAHCOLI, a new concept for lidars: technical setup, science applications, and first measurements, Atmos. Meas. Tech., 14, 3815–3836, https://doi.org/10.5194/amt-14-3815-2021, 2021
  • Mixa, T., Dörnbrack, A., & Rapp, M. (2021). Nonlinear Simulations of Gravity Wave Tunneling and Breaking over Auckland Island, Journal of the Atmospheric Sciences, 78(5), 1567-1582. https://doi.org/10.1175/JAS-D-20-0230.1
  • Rapp, M., Kaifler, B., Dörnbrack, A., Gisinger, S., Mixa, T., Reichert, R., Kaifler, N., Knobloch, S., Eckert, R., Wildmann, N., Giez, A., Krasauskas, L., Preusse, P., Geldenhuys, M., Riese, M., Woiwode, W., Friedl-Vallon, F., Sinnhuber, B., Torre, A. d. l., Alexander, P., Hormaechea, J. L., Janches, D., Garhammer, M., Chau, J. L., Conte, J. F., Hoor, P., & Engel, A. (2021). SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest Hotspot, Bulletin of the American Meteorological Society, 102(4), E871-E893. https://doi.org/10.1175/BAMS-D-20-0034.1
  • Reichert, R., Kaifler, B., Kaifler, N., Dörnbrack, A., Rapp, M., & Hormaechea, J. L. (2021). High-cadence lidar observations of middle atmospheric temperature and gravity waves at the Southern Andes hot spot. Journal of Geophysical Research: Atmospheres, 126, e2021JD034683. https://doi.org/10.1029/2021JD034683
  • Rodal, Marie, & Schlutow, Mark (2021). Waves in the gas centrifuge: Asymptotic theory and similarities with the atmosphere. Journal of Fluid Mechanics, 928, A17. https://doi.org/10.1017/jfm.2021.811
  • Schmid, F., Gagarina, E., Klein, R., and U. Achatz, 2021: Towards a numerical laboratory for investigations of gravity-wave mean-flow interactions in the atmosphere. Mon. Wea. Rev. accepted
  • Söder, J., Zülicke, C., Gerding, M., & Lübken, F.-J. (2021). High-resolution observations of turbulence distributions across tropopause folds. Journal of Geophysical Research: Atmospheres, 126, e2020JD033857. https://doi.org/10.1029/2020JD033857
  • Stober, G., Janches, D., Matthias, V., Fritts, D., Marino, J., Moffat-Griffin, T., Baumgarten, K., Lee, W., Murphy, D., Kim, Y. H., Mitchell, N., and Palo, S.: Seasonal evolution of winds, atmospheric tides, and Reynolds stress components in the Southern Hemisphere mesosphere–lower thermosphere in 2019, Ann. Geophys., 39, 1–29, https://doi.org/10.5194/angeo-39-1-2021, 2021.
  • Strelnikova, I., Almowafy, M., Baumgarten, G., Baumgarten, K., Ern, M., Gerding, M., & Lübken, F. (2021). Seasonal Cycle of Gravity Wave Potential Energy Densities from Lidar and Satellite Observations at 54° and 69°N, Journal of the Atmospheric Sciences, 78(4), 1359-1386. https://doi.org/10.1175/JAS-D-20-0247.1
  • Strube, C., Preusse, P., Ern, M., and Riese, M.: Propagation paths and source distributions of resolved gravity waves in ECMWF-IFS analysis fields around the southern polar night jet, Atmos. Chem. Phys., 21, 18641–18668, https://doi.org/10.5194/acp-21-18641-2021, 2021.
  • Vargas, F., Chau, J. L., Charuvil Asokan, H., and Gerding, M.: Mesospheric gravity wave activity estimated via airglow imagery, multistatic meteor radar, and SABER data taken during the SIMONe–2018 campaign, Atmos. Chem. Phys., 21, 13631–13654, https://doi.org/10.5194/acp-21-13631-2021, 2021.
  • Völker, G.S., Akylas T.R. and U. Achatz, 2021: An Application of WKBJ Theory for Triad Interactions of Internal Gravity Waves in Varying Background Flows. Quart. J. Roy. Met. Soc., 147, 1112–1134. https://doi.org/10.1002/qj.3962
  • Wildmann, N., R. Eckert, A. Dörnbrack, S. Gisinger, M. Rapp, K. Ohlmann, A. van Niekerk, 2021: In-situ measurements of wind and turbulence by a motor glider in the Andes. J. Atmos. Ocean. Techn.,38(4), 921-935; https://doi.org/10.1175/JTECH-D-20-0137.1
  • Yigit, E., Medvedev, A. S, and Ern, M. (2021): Effects of Latitude-Dependent Gravity Wave Source Variations on the Middle and Upper Atmosphere, Front. Astron. Space Sci., 7, 614018, https://doi.org/10.3389/fspas.2020.614018

2020:

  • Amiramjadi, M., A. R. Mohebalhojeh, M. Mirzaei, C. Zülicke & R. Plougonven, 2020: The spatio–temporal variability of nonorographic gravity wave energy and relation to its source functions. Mon. Wea. Rev. 148, 12: 4837–4857, https://doi.org/10.1175/MWR-D-20-0195.1
  • Bramberger, M., A. Dörnbrack, H. Wilms, F. Ewald, and R. Sharman, 2020: Mountain-Wave Turbulence Encounter of the Research Aircraft HALO above Iceland. J. Appl. Meteor. Climatol., 59, 567–588, https://doi.org/10.1175/JAMC-D-19-0079.1
  • Chau, J-L-,  J. M. Urco, V. Avsarkisov, J. P. Vierinen, R. Latteck, C. M. Hall und M. Tsutsumi, Four-dimensional quantification of Kelvin-Helmholtz instabilities in the polar summer mesosphere using volumetric radar imaging, Geophys. Res. Lett., 47, https://doi.org/10.1029/2019GL086081, 2020
  • Dörnbrack, A., Kaifler, B., Kaifler, N., Rapp, M., Wildmann, N., Garhammer, M., Ohlman, K., Payne, J., Sandercock, M., and E. Austin, 2020: Unusual appearance of mother-of-pearl clouds above El Calafate, Argentina (50° 21? S, 72° 16? W). Weather, 75, 378-388. https://doi.org/10.1002/wea.3863
  • Gisinger, S., Wagner, J., and Witschas, B., 2020: Airborne measurements and large-eddy simulations of small-scale gravity waves at the tropopause inversion layer over Scandinavia, Atmos. Chem. Phys., 20, 10091–10109, https://doi.org/10.5194/acp-20-10091-2020, 2020
  • Haghighatnasab, M., M. Mirzaei, A.R. Mohebalhojeh, C. Zülicke, and R. Plougonven, 2020: Application of the Compressible, Nonhydrostatic, Balanced Omega Equation in Estimating Diabatic Forcing for Parameterization of Inertia–Gravity Waves: Case Study of Moist Baroclinic Waves Using WRF. J. Atmos. Sci., 77, 113–129, https://doi.org/10.1175/JAS-D-19-0039.1
  • Heale, C. J., Bossert, K., Vadas, S. L., Hoffmann, L., Dörnbrack, A., Stober, G., and J. B. Snively , and C. Jacobi, 2020: Secondary gravity waves generated by breaking mountain waves over Europe. Journal of Geophysical Research: Atmospheres, 125, e2019JD031662. https://doi.org/10.1029/2019JD031662
  • He, M., Y. Yamazaki, P. Hoffmann, C. Hall, M. Tsutsumi, G. Li und J. Chau, Zonal wavenumber diagnosis of rossby-wave-like oscillations using paired ground-based radars, J. Geophys. Res., 125, https://doi.org/10.1029/2019JD031599, 2020
  • Kaifler, N., B. Kaifler, A. Dörnbrack, M. Rapp, J. L. Hormaechea, and A. de la Torre, 2020: Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina. Scientific Reports 10, 14529. https://doi.org/10.1038/s41598-020-71443-7
  • Kivi, R., Dörnbrack, A., Sprenger, M., and H. Vömel, 2020: Far-ranging impact of mountain waves excited over Greenland on stratospheric dehydration and rehydration, Journal of Geophysical Research: Atmospheres, 125, e2020JD033055. https://doi.org/10.1029/2020JD033055
  • Krisch, I., Ern, M., Hoffmann, L., Preusse, P., Strube, C., Ungermann, J., Woiwode, W., and Riese, M.: Superposition of gravity waves with different propagation characteristics observed by airborne and space-borne infrared sounders, Atmos. Chem. Phys., 20, 11469–11490, https://doi.org/10.5194/acp-20-11469-2020, 2020
  • Reyes, P.M., E. Kudeki, G. A. Lehmacher, J. L. Chau und M. A. Milla, VIPIR and 50 MHz radar studies of gravity wave signatures in 150-km echoes observed at Jicamarca, J. Geophys. Res., 125, https://doi.org/10.1029/2019JA027535, 2020
  • Rodda, C., and U. Harlander, 2020: Transition from Geostrophic Flows to Inertia–Gravity Waves in the Spectrum of a Differentially Heated Rotating Annulus Experiment. J. Atmos. Sci., 77, 2793–2806, https://doi.org/10.1175/JAS-D-20-0033.1
  • Rodda, C., Hien, S., Achatz, U. et al. A new atmospheric-like differentially heated rotating annulus configuration to study gravity wave emission from jets and fronts. Exp Fluids 61, 2 (2020). https://doi.org/10.1007/s00348-019-2825-z
  • Schlutow, Mark and Wahlén, Erik. "Generalized modulation theory for strongly nonlinear gravity waves in a compressible atmosphere" Mathematics of Climate and Weather Forecasting, vol. 6, no. 1, 2020, pp. 97-112. https://doi.org/10.1515/mcwf-2020-0105
  • Schlutow, Mark and Voelker, Georg S.. "On strongly nonlinear gravity waves in a vertically sheared atmosphere" Mathematics of Climate and Weather Forecasting, vol. 6, no. 1, 2020, pp. 63-74. https://doi.org/10.1515/mcwf-2020-0103
  • Stephan, C. C., Schmidt, H., Zuelicke, C., & Matthias, V. (2020). Oblique gravity wave propagation during sudden stratospheric warmings. Journal of Geophysical Research: Atmospheres, 125, e2019JD031528. https://doi.org/10.1029/2019JD031528
  • G. Stober, K. Baumgarten, J. P. McCormack, P. Brown und J. Czarnecki, Comparative study between ground-based observations and NAVGEM-HA analysis data in the mesosphere and lower thermosphere region, Atmos. Chem. Phys., 11979-12010,https://doi.org/10.5194/acp-20-11979-2020, 2020
  • Strelnikova, I., G. Baumgarten und F.-J. Lübken, Advanced hodograph-based analysis technique to derive gravity-waves parameters from lidar observations, Atmos. Meas. Tech., 13, 479-499, https://doi.org/10.5194/amt-13-479-2020, 2020
  • Strube, C., Ern, M., Preusse, P., and Riese, M.: Removing spurious inertial instability signals from gravity wave temperature perturbations using spectral filtering methods, Atmos. Meas. Tech., 13, 4927–4945, https://doi.org/10.5194/amt-13-4927-2020, 2020
  • Wilms, H., Bramberger, M., and A. Dörnbrack, 2020: Observation and Simulation of Mountain Wave Turbulence above Iceland: Turbulence Intensification due to Wave Interference. Q. J. R. Met. Soc., 1– 21. https://doi.org/10.1002/qj.3848

2019:

  • Baumgarten, K. and Stober, G.: On the evaluation of the phase relation between temperature and wind tides based on ground-based measurements and reanalysis data in the middle atmosphere, Ann. Geophys., 37, 581–602, https://doi.org/10.5194/angeo-37-581-2019, 2019.
  • S. Borchert, G. Zhou, M. Baldauf, H. Schmidt, G. Zängl and D. Reinert. The upper-atmosphere extension of the ICON general circulation model (version: ua-icon-1.0). Geosci. Model Dev., 12, 3541-3569, https://doi.org/10.5194/gmd-12-3541-2019, 2019
  • Pütz, C., Schlutow, M. and Klein, R.: Initiation of ray tracing models: evolution of small-amplitude gravity wave packets in non-uniform background. Theor. Comput. Fluid Dyn. (2019) 33: 509-535; https://doi.org/10.1007/s00162-019-00504-z
  • Chen, D., Strube, C., Ern, M., Preusse, P., and Riese, M.: Global analysis for periodic variations in gravity wave squared amplitudes and momentum fluxes in the middle atmosphere, Ann. Geophys., 37, 487-506, https://doi.org/10.5194/angeo-37-487-2019, 2019.
  • Reichert, R., Kaifler, B., Kaifler, N., Rapp, M., Pautet, P.-D., Taylor, M. J., Kozlovsky, A., Lester, M., and Kivi, R.: Retrieval of intrinsic mesospheric gravity wave parameters using lidar and airglow temperature and meteor radar wind data, Atmos. Meas. Tech., 12, 5997–6015, https://doi.org/10.5194/amt-12-5997-2019, 2019
  • Schlutow, M., Wahlén, E. & Birken, P. (2019). Spectral stability of nonlinear gravity waves in the atmosphere. Mathematics of Climate and Weather Forecasting, 5(1), pp. 12-33. 2019, https://doi.org/10.1515/mcwf-2019-0002
  • Schlutow, M., 2019: Modulational Stability of Nonlinear Saturated Gravity Waves. J. Atmos. Sci., 76, 3327–3336, https://doi.org/10.1175/JAS-D-19-0065.1
  • Stephan, C.C., C. Strube, D. Klocke, M. Ern, L. Hoffmann, P. Preusse, and H. Schmidt, 2019: Intercomparison of Gravity Waves in Global Convection-Permitting Models. J. Atmos. Sci., 76, 2739–2759, https://doi.org/10.1175/JAS-D-19-0040.1
  • Stephan, C. C., Strube, C., Klocke, D., Ern, M., Hoffmann, L., Preusse, P., & Schmidt, H. ( 2019). Gravity waves in global high‐resolution simulations with explicit and parameterized convection. Journal of Geophysical Research: Atmospheres, 124, 4446– 4459. https://doi.org/10.1029/2018JD030073
  • Sutherland, B.R., Achatz, U., Caulfield, C. and Klymak, J. M., 2019: Recent progress in modeling imbalance in the atmosphere and ocean. Phys. Rev. Fluids 4, 010501 , January 2019; https://doi.org/10.1103/PhysRevFluids.4.010501
  • Söder, J., Gerding, M., Schneider, A., Dörnbrack, A., Wilms, H., Wagner, J., and Lübken, F.-J.: Evaluation of wake influence on high-resolution balloon-sonde measurements, Atmos. Meas. Tech., 12, 4191–4210, https://doi.org/10.5194/amt-12-4191-2019, 2019
  • Wei, J., G. Bölöni, and U. Achatz, 2019: Efficient Modeling of the Interaction of Mesoscale Gravity Waves with Unbalanced Large-Scale Flows: Pseudomomentum-Flux Convergence versus Direct Approach. J. Atmos. Sci., 76, 2715–2738, https://doi.org/10.1175/JAS-D-18-0337.1
  • Wilhelm, S., Stober, G., and Brown, P.: Climatologies and long-term changes in mesospheric wind and wave measurements based on radar observations at high and mid latitudes, Ann. Geophys., 37, 851–875, https://doi.org/10.5194/angeo-37-851-2019, 2019
  • Wörl, R., Strelnikov, B., Viehl, T. P., Höffner, J., Pautet, P.-D., Taylor, M. J., Zhao, Y., and Lübken, F.-J.: Thermal structure of the mesopause region during the WADIS-2 rocket campaign, Atmos. Chem. Phys., 19, 77–88, https://doi.org/10.5194/acp-19-77-2019, 2019.

2018:

  • Baumgarten, K., Gerding, M., Baumgarten, G., and Lübken, F.-J.: Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding, Atmos. Chem. Phys., 18, 371–384, https://doi.org/10.5194/acp-18-371-2018, 2018.
  • Bramberger, M., A. Dörnbrack, H. Wilms, S. Gemsa, K. Raynor, and R. Sharman, 2018: Vertically Propagating Mountain Waves—A Hazard for High-Flying Aircraft?. J. Appl. Meteor. Climatol., 57, 1957–1975, https://doi.org/10.1175/JAMC-D-17-0340.1
  • Dörnbrack, A., Gisinger, S., Kaifler, N., Portele, T. C., Bramberger, M., Rapp, M., Gerding, M., Söder, J., Žagar, N., and Jelić, D.: Gravity waves excited during a minor sudden stratospheric warming, Atmos. Chem. Phys., 18, 12915-12931, https://doi.org/10.5194/acp-18-12915-2018, 2018.
  • Ern, M., Trinh, Q. T., Preusse, P., Gille, J. C., Mlynczak, M. G., Russell III, J. M., and Riese, M.: GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings, Earth Syst. Sci. Data, 10, 857-892, https://doi.org/10.5194/essd-10-857-2018, 2018. pdf
    • Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C; Mlynczak, Martin G; Russell III, James M; Riese, Martin (2017): GRACILE: A comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings, link to data in NetCDF format. PANGAEA, https://doi.org/10.1594/PANGAEA.879658 download
  • Ghasemi, A., Klein, M., Will, A., & Harlander, U. (2018). Mean flow generation by an intermittently unstable boundary layer over a sloping wall. Journal of Fluid Mechanics, 853, 111-149. https://doi.org/10.1017/jfm.2018.552
  • U. Harlander, I. D. Borcia & A. Krebs (2019) Non-normality increases variance of gravity waves trapped in a tilted box, Geophysical & Astrophysical Fluid Dynamics, 113:5-6, 602-622, https://doi.org/10.1080/03091929.2018.1549660
  • Hien, S., J. Rolland, S. Borchert, L. Schoon, C. Zülicke & U. Achatz, 2018: Spontaneous inertia–gravity wave emission in the differentially heated rotating annulus experiment. J. Fluid Mech. 838: 5-41, https://doi.org/10.1017/jfm.2017.883.
  • Krisch, I., Ungermann, J., Preusse, P., Kretschmer, E., and Riese, M.: Limited angle tomography of mesoscale gravity waves by the infrared limb-sounder GLORIA, Atmos. Meas. Tech., 11, 4327-4344, https://doi.org/10.5194/amt-11-4327-2018, 2018
  • Portele, T.C., A. Dörnbrack, J.S. Wagner, S. Gisinger, B. Ehard, P. Pautet, and M. Rapp, 2018: Mountain-Wave Propagation under Transient Tropospheric Forcing: A DEEPWAVE Case Study. Mon. Wea. Rev., 146, 1861–1888, https://doi.org/10.1175/MWR-D-17-0080.1
  • Pedatella, N. M., J. L. Chau, H. Schmidt, L. P. Goncharenko, C. Stolle, K. Hocke, V. L. Harvey, B. Funke, and T. A. Siddiqui (2018), How sudden stratospheric warming affects the whole atmosphere, Eos, 99, https://doi.org/10.1029/2018EO092441
  • Rapp, M., Dörnbrack, A., and Kaifler, B. 2018: An intercomparison of stratospheric gravity wave potential energy densities from METOP GPS radio occultation measurements and ECMWF model data, Atmos. Meas. Tech., 11, 1031-1048, https://doi.org/10.5194/amt-11-1031-2018, 2018.
  • Rapp, M., Dörnbrack, A., & Preusse, P. (2018). Large midlatitude stratospheric temperature variability caused by inertial instability: A potential source of bias for gravity wave climatologies. Geophysical Research Letters, 45, 10,682–10,690. https://doi.org/10.1029/2018GL079142
  • C. Rodda, I. D. Borcia, P. Le Gal, M. Vincze & U. Harlander (2018) Baroclinic, Kelvin and inertia-gravity waves in the barostrat instability experiment, Geophysical & Astrophysical Fluid Dynamics, 112:3, 175-206, https://doi.org/10.1080/03091929.2018.1461858
  • Schoon, L. and Zülicke, C.: A novel method for the extraction of local gravity wave parameters from gridded three-dimensional data: description, validation, and application, Atmos. Chem. Phys., 18, 6971-6983, https://doi.org/10.5194/acp-18-6971-2018, 2018.
  • Von Larcher, T., Viazzo, S., Harlander, U., Vincze, M., & Randriamampianina, A. (2018). Instabilities and small-scale waves within the Stewartson layers of a thermally driven rotating annulus. Journal of Fluid Mechanics, 841, 380-407. doi:10.1017/jfm.2018.10
  • Wilhelm, J., T.R. Akylas, G. Bölöni, J. Wei, B. Ribstein, R. Klein, and U. Achatz, 2018: Interactions between Mesoscale and Submesoscale Gravity Waves and Their Efficient Representation in Mesoscale-Resolving Models. J. Atmos. Sci., 75, 2257–2280, https://doi.org/10.1175/JAS-D-17-0289.1
  • Woiwode, W., Dörnbrack, A., Bramberger, M., Friedl-Vallon, F., Haenel, F., Höpfner, M., Johansson, S., Kretschmer, E., Krisch, I., Latzko, T., Oelhaf, H., Orphal, J., Preusse, P., Sinnhuber, B.-M., and Ungermann, J.: Mesoscale fine structure of a tropopause fold over mountains, Atmos. Chem. Phys., 18, 15643-15667, https://doi.org/10.5194/acp-18-15643-2018, 2018.
  • Zülicke, C., E. Becker, V. Matthias, D.H. Peters, H. Schmidt, H. Liu, L.d. Ramos, and D.M. Mitchell, 2018: Coupling of Stratospheric Warmings with Mesospheric Coolings in Observations and Simulations. J. Climate, 31, 1107–1133, https://doi.org/10.1175/JCLI-D-17-0047.1

2017:

  • Baumgarten, K., M. Gerding, and F.-J. Lübken (2017), Seasonal variation of gravity wave parameters using different filter methods with daylight lidar measurements at mid-latitudes, J. Geophys. Res., 122, 2683-2695, doi:10.1002/2016JD025916 , 2017
  • Dörnbrack, A., S. Gisinger, and B. Kaifler (2017), On the interpretation of gravity wave measurements by groundbased lidars, Atmosphere, 8 (1-22), doi: 10.3390/atmos8030049 link . (GW-TP /PACOG)
  • Dörnbrack, A., S. Gisinger, M. C. Pitts, L. R. Poole, and M. Maturilli,2017: Multilevel cloud structures over Svalbard, Mon. Weather Rev., 145, 1149-1159, doi: 10.1175/MWR-D-16-0214.1 link
  • Ehard, B., B. Kaifler, A. Dörnbrack, P. Preusse, S. Eckermann, M. Bramberger, S. Gisinger, N. Kaifler, B. Liley, J. Wagner, and M. Rapp, 2017: Horizontal propagation of large amplitude mountain waves in the vicinity of the polar night jet. J. Geophys. Res. Atmos., 122, 1423– 1436, doi:10.1002/2016JD025621.(PACOG, SV cooperation)
  • Gerber, S. & I. Horenko, 2017: Toward a direct and scalable identification of reduced models for categorical processes. Proc. Natl. Acad. Sci. USA 114, 19: 4863-4868, doi:10.1073/pnas.1612619114, link
  • Gisinger, S., A. Dörnbrack, V. Matthias, J. D. Doyle, S. D. Eckermann, B. Ehard, L. Hoffmann, B. Kaifler, C. G. Kruse, and M. Rapp, 2017: Atmospheric Conditions during the Deep Propagating Gravity Wave Experiment (DEEPWAVE), Mon. Wea. Rev. 145, 4249-4275. abstract
  • Horenko, I., S. Gerber, T. J. O'Kane, J. S. Risbey, D. P. Monselesan, C. L. E. Franzke & T. J. Okane, 2017: On Inference and Validation of Causality Relations in Climate Teleconnections. Nonlinear and Stochastic Climate Dynamics, C. Franzke, and T. O'Kane, Eds., Cambridge University Press: 184-208, doi:10.1017/9781316339251.008; ISBN: 9781107118140
  • N. Kaifler, B. Kaifler, B. Ehard, S. Gisinger, A. Dörnbrack, M. Rapp, R. Kivi, A. Kozlovsky, M. Lester, B. Liley, 2017: Observational indications of downward-propagating gravity waves in middle atmosphere lidar data. Journal of Atmospheric and Solar-Terrestrial Physics162,16-27, https://doi.org/10.1016/j.jastp.2017.03.003.
  • Krisch, I., Preusse, P., Ungermann, J., Dörnbrack, A., Eckermann, S. D., Ern, M., Friedl-Vallon, F., Kaufmann, M., Oelhaf, H., Rapp, M., Strube, C., and Riese, M.: First tomographic observations of gravity waves by the infrared limb imager GLORIA, Atmos. Chem. Phys., 17, 14937-14953, https://doi.org/10.5194/acp-17-14937-2017, 2017 pdf
  • Mirzaei, M., A.R. Mohebalhojeh, C. Zülicke, and R. Plougonven, 2017: On the Quantification of Imbalance and Inertia–Gravity Waves Generated in Numerical Simulations of Moist Baroclinic Waves Using the WRF Model. J. Atmos. Sci., 74, 4241–4263, https://doi.org/10.1175/JAS-D-16-0366.1
  • O’Kane, T. J., D. P. Monselesan, J. S. Risbey, I. Horenko & C. L. E. Franzke, 2017: Research Article. On memory, dimension, and atmospheric teleconnections. Mathematics of Climate and Weather Forecasting, 3(1), pp. 1-27. DOI: https://doi.org/10.1515/mcwf-2017-0001
  • Risbey, J. S., O'Kane, T. J., Monselesan, D. P., Franzke, C. L. E., & Horenko, I. ( 2018). On the dynamics of Austral heat waves. Journal of Geophysical Research: Atmospheres, 123, 38– 57. https://doi.org/10.1002/2017JD027222
  • G. Rüdiger, T. Seelig, M. Schultz, M. Gellert, Ch. Egbers & U. Harlander (2017) The stratorotational instability of Taylor-Couette flows with moderate Reynolds numbers, Geophysical & Astrophysical Fluid Dynamics, 111:6, 429-447, https://doi.org/10.1080/03091929.2017.1382487
  • Schlutow, M.; Klein, R.; Achatz, U., 2017: Finite-amplitude gravity waves in the atmosphere: traveling wave solutions, J. Fluid Mech., 826, 1034 - 1065 https://doi.org/10.1017/jfm.2017.459
  • Schneider, A., J. Wagner, J. Söder, M. Gerding und F.-J. Lübken (2017), Case study of wave breaking with high-resolution turbulence measurements with LITOS and WRF simulations, Atmos. Chem. Phys., abstract.
  • Schneider, A., Wagner, J., Söder, J., Gerding, M., and Lübken, F.-J., 2017: Case study of wave breaking with high-resolution turbulence measurements with LITOS and WRF simulations, Atmos. Chem. Phys., 17, 7941–7954, https://doi.org/10.5194/acp-17-7941-2017
  • Vincze, M., Borcia, I.D. & Harlander, U. Temperature fluctuations in a changing climate: an ensemble-based experimental approach. Sci Rep 7, 254 (2017) doi:10.1038/s41598-017-00319-0
  • Wagner, J., Dörnbrack, A., Rapp, M., Gisinger, S., Ehard, B., Bramberger, M., Witschas, B., Chouza, F., Rahm, S., Mallaun, C., Baumgarten, G., and Hoor, P., 2017: Observed versus simulated mountain waves over Scandinavia – improvement of vertical winds, energy and momentum fluxes by enhanced model resolution?, Atmos. Chem. Phys., 17, 4031-4052, doi:10.5194/acp-17-4031-2017, link

2016:

  • Achatz, U., Ribstein, B., Senf, F., and Klein, R. 2016: The interaction  between synoptic-scale balanced flow and a finite-amplitude mesoscale wave field throughout all atmospheric layers: Weak and moderately strong  stratification. Q. J. R. Met. Soc. vol. 143 (2017), pp. 342–361 abstract
  • Bölöni, G., B. Ribstein, J. Muraschko, C. Sgoff, J. Wei, and U. Achatz, 2016: The Interaction between Atmospheric Gravity Waves and Large-Scale Flows: An Efficient Description beyond the Nonacceleration Paradigm. J. Atmos. Sci., 73, 4833–4852, https://doi.org/10.1175/JAS-D-16-0069.1
  • Ehard, B., P. Achtert, A. Dörnbrack, S. Gisinger, J. Gumbel, M. Khaplanov, M. Rapp, and J. Wagner, 2016: Combination of Lidar and Model Data for Studying Deep Gravity Wave Propagation. Mon. Wea. Rev., 144, 77–98, https://doi.org/10.1175/MWR-D-14-00405.1
  • Ern, M., Trinh, Q. T., Kaufmann, M., Krisch, I., Preusse, P., Ungermann, J., Zhu, Y., Gille, J. C., Mlynczak, M. G., Russell III, J. M., Schwartz, M. J., and Riese, M., 2016: Satellite observations of middle atmosphere gravity wave absolute momentum flux and of its vertical gradient during recent stratospheric warmings, Atmos. Chem. Phys., 16, 9983-10019, doi:10.5194/acp-16-9983-2016. pdf
  • Kalisch, S., H.-Y. Chun, M. Ern, P. Preusse, Q. T. Trinh, S. D. Eckermann, and M. Riese, 2016: Comparison of simulated and observed convective gravity waves, J. Geophys. Res. Atmos., 121, 13474–13492, doi:10.1002/2016JD025235. pdf
  • Lübken, F.-J., R. Latteck, E. Becker, J. Höffner, and D. Murphy, 2016: Using polar mesosphere summer echoes and stratospheric/mesospheric winds to explain summer mesopause jumps in Antarctica. J. Atmos. Solar-Terr. Phys. doi: 10.1016/j.jastp.2016.06.008 abstract
  • Matthias, V. and Ern, M.: On the origin of the mesospheric quasi-stationary planetary waves in the unusual Arctic winter 2015/2016, Atmos. Chem. Phys., 18, 4803-4815, https://doi.org/10.5194/acp-18-4803-2018, 2018. pdf
  • Meraner, K., H. Schmidt, E. Manzini, B. Funke, and A. Gardini (2016), Sensitivity of simulated mesospheric transport of nitrogen oxides to parameterized gravity waves. J. Geophys. Res., 121(20). abstract
  • Ribstein, B. and  U. Achatz, 2016: The interaction between gravity waves and solar tides in a linear tidal model with a 4D ray-tracing gravity-wave parameterization. J. Geophys. Res., 121, https://doi.org/10.1002/2016JA022478 abstract
  • Trinh, Q. T., Kalisch, S., Preusse, P., Ern, M., Chun, H.–Y., Eckermann, S. D., Kang, M.–J., and Riese, M., 2016: Tuning of a convective gravity wave source scheme based on HIRDLS observations, Atmos. Chem. Phys., 16, 7335-7356, doi:10.5194/acp-16-7335-2016. pdf
  • Vincze, M., I. Borcia, U. Harlander and P. Le Gal, 2016: Double-diffusive convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability, Fluid Dyn. Res., 48, 061414. abstract

2015:

  • Ehard, B., Kaifler, B., Kaifler, N., and Rapp, M., 2015: Evaluation of methods for gravity wave extraction from middle-atmospheric lidar temperature measurements, Atmos. Meas. Tech., 8, 4645-4655, doi:10.5194/amt-8-4645-2015. abstract
  • Fritts, D. C., M. Taylor, A. Dörnbrack, M. Rapp, B. Kaifler, and S. Gisinger (2015), The deep propagating gravity wave experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere, Bulletin of the American Meteorological Society, doi: 10.1175/BAMS-D-14-00269 link
  • Kaifler, B., N. Kaifler, B. Ehard, A. Dörnbrack, M. Rapp, and D. C. Fritts. 2015: Influences of source conditions on mountain wave penetration into the stratosphere and mesosphere, Geophys. Res. Lett., 42, 9488{9494, doi: 10.1002/2015GL066465 abstract
  • Ribstein, B., U. Achatz, and F. Senf, 2015: The interaction between gravity waves and solar tides: Results from 4-D ray tracing coupled to a linear tidal model, J. Geophys. Res. Space Physics, 120, 6795–6817, doi:10.1002/2015JA021349. abstract

Data sets

to paper of Ern et al. , 2018:

  • Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C; Mlynczak, Martin G; Russell III, James M; Riese, Martin (2017): GRACILE: A comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings, link to data in NetCDF format. PANGAEA, https://doi.org/10.1594/PANGAEA.879658 download

Publications sorted by projects

Subcategories