Publications

Publications which came out of MS-GWaves

 

2022:

  • Borchert et al: Three-dimensional static instability of gravity waves and a possible parameterization of the associated wave breaking (accepted at AMS)
  • Becker, E., Vadas, S. L., Bossert, K., Harvey, V. L., Zülicke, C., & Hoffmann, L. (2022). A High-resolution whole-atmosphere model with resolved gravity waves and specified large-scale dynamics in the troposphere and stratosphere. Journal of Geophysical Research: Atmospheres, 127, e2021JD035018. https://doi.org/10.1029/2021JD035018
  • Charuvil Asokan, H., Chau, J. L., Larsen, M. F., Conte, J. F., Marino, R., Vierinen, J., and Borchert, S. (2022). Validation of multistatic meteor radar analysis using modeled mesospheric dynamics: An assessment of the reliability of gradients and vertical velocities. Journal of Geophysical Research: Atmospheres, 127, e2021JD036039. https://doi.org/10.1029/2021JD036039
  • Charuvil Asokan, H., Chau, J.L., Marino, R., Vierinen, J., Vargas , F., Urco J.M., Clahsen, M. and Jacobi, C. (2022 . Frequency spectra of horizontal winds in the mesosphere and lower thermosphere region from multistatic specular meteor radar observations during the SIMONe 2018 campaign. Earth Planets Space 74, 69 (2022). https://doi.org/10.1186/s40623-022-01620-7
  • Dörnbrack, A., Eckermann, S. D., Williams, B. P., & Haggerty, J. (2022). Stratospheric Gravity Waves Excited by a Propagating Rossby Wave Train—A DEEPWAVE Case Study, Journal of the Atmospheric Sciences, 79(2), 567-591. https://doi.org/10.1175/JAS-D-21-0057.1
  • Gisinger, S., I. Polichtchouk, A. Dörnbrack, R. Reichert, B. Kaifler, N. Kaifler, M. Rapp, and I. Sandu, 2022: Gravity-Wave-Driven Seasonal Variability of Temperature Differences between ECMWF IFS and Rayleigh Lidar Measurements in the Lee of the Southern Andes, Journal of Geophysical Research: Atmospheres, 127, e2021JD036270. https://doi.org/10.1029/2021JD036270
  • Kruse, C. G., Alexander, M. J., Hoffmann, L., van Niekerk, A., Polichtchouk, I., Bacmeister, J. T., Holt, L., Plougonven, R., Šácha, P., Wright, C., Sato, K., Shibuya, R., Gisinger, S., Ern, M., Meyer, C. I., & Stein, O. (2022). Observed and Modeled Mountain Waves from the Surface to the Mesosphere near the Drake Passage, Journal of the Atmospheric Sciences, 79(4), 909-932. https://doi.org/10.1175/JAS-D-21-0252.1

2021:

  • Bölöni, G., Kim, Y., Borchert, S., & Achatz, U. (2021). Toward Transient Subgrid-Scale Gravity Wave Representation in Atmospheric Models. Part I: Propagation Model Including Nondissipative Wave–Mean-Flow Interactions, Journal of the Atmospheric Sciences, 78(4), 1317-1338, https://doi.org/10.1175/JAS-D-20-0065.1
  • Ern, M., Diallo, M., Preusse, P., Mlynczak, M. G., Schwartz, M. J., Wu, Q., and Riese, M.: The semiannual oscillation (SAO) in the tropical middle atmosphere and its gravity wave driving in reanalyses and satellite observations, Atmos. Chem. Phys., 21, 13763-13795, https://doi.org/10.5194/acp-21-13763-2021, 2021.
  • Dörnbrack, A. (2021). Stratospheric Mountain Waves Trailing across Northern Europe, Journal of the Atmospheric Sciences, 78(9), 2835-2857. https://doi.org/10.1175/JAS-D-20-0312.1
  • Geldenhuys, M., Preusse, P., Krisch, I., Zülicke, C., Ungermann, J., Ern, M., Friedl-Vallon, F., and Riese, M.: Orographically induced spontaneous imbalance within the jet causing a large-scale gravity wave event, Atmos. Chem. Phys., 21, 10393–10412, https://doi.org/10.5194/acp-21-10393-2021, 2021
  • Gupta, A., Birner, T., Dörnbrack, A., & Polichtchouk, I. (2021). Importance of gravity wave forcing for springtime southern polar vortex breakdown as revealed by ERA5. Geophysical Research Letters, 48, e2021GL092762. https://doi.org/10.1029/2021GL092762
  • Harlander,U. & M. V. Kurgansky (2021): Two-dimensional internal gravity wave beam instability. Linear theory and subcritical instability, Geophysical & Astrophysical Fluid Dynamics, https://doi.org/10.1080/03091929.2021.1943379
  • Kim, Y.-H., & Achatz, U. (2021). Interaction between stratospheric Kelvin waves and gravity waves in the easterly QBO phase. Geophysical Research Letters, 48, e2021GL095226. https://doi.org/10.1029/2021GL095226
  • Kim, Y., Bölöni, G., Borchert, S., Chun, H., & Achatz, U. (2021). Toward Transient Subgrid-Scale Gravity Wave Representation in Atmospheric Models. Part II: Wave Intermittency Simulated with Convective Sources, Journal of the Atmospheric Sciences, 78(4), 1339-1357. https://doi.org/10.1175/JAS-D-20-0066.1
  • Le Gal, P., Harlander, U., Borcia, I., Le Dizès, S., Chen, J., & Favier, B. (2021). Instability of vertically stratified horizontal plane Poiseuille flow. Journal of Fluid Mechanics, 907, R1. https://doi.org/10.1017/jfm.2020.917
  • Lübken. F.-J., Baumgarten, G. and Berger, U. (2021): Long term trends of mesopheric ice layers: A model study, J. Atmos. Solar-Terr. Phys., 105378, doi:10.1016/j.jastp.2020.105378, 2021.
  • Lübken, F.-J. and Höffner, J.: VAHCOLI, a new concept for lidars: technical setup, science applications, and first measurements, Atmos. Meas. Tech., 14, 3815–3836, https://doi.org/10.5194/amt-14-3815-2021, 2021
  • Mixa, T., Dörnbrack, A., & Rapp, M. (2021). Nonlinear Simulations of Gravity Wave Tunneling and Breaking over Auckland Island, Journal of the Atmospheric Sciences, 78(5), 1567-1582. https://doi.org/10.1175/JAS-D-20-0230.1
  • Rapp, M., Kaifler, B., Dörnbrack, A., Gisinger, S., Mixa, T., Reichert, R., Kaifler, N., Knobloch, S., Eckert, R., Wildmann, N., Giez, A., Krasauskas, L., Preusse, P., Geldenhuys, M., Riese, M., Woiwode, W., Friedl-Vallon, F., Sinnhuber, B., Torre, A. d. l., Alexander, P., Hormaechea, J. L., Janches, D., Garhammer, M., Chau, J. L., Conte, J. F., Hoor, P., & Engel, A. (2021). SOUTHTRAC-GW: An Airborne Field Campaign to Explore Gravity Wave Dynamics at the World’s Strongest Hotspot, Bulletin of the American Meteorological Society, 102(4), E871-E893. https://doi.org/10.1175/BAMS-D-20-0034.1
  • Reichert, R., Kaifler, B., Kaifler, N., Dörnbrack, A., Rapp, M., & Hormaechea, J. L. (2021). High-cadence lidar observations of middle atmospheric temperature and gravity waves at the Southern Andes hot spot. Journal of Geophysical Research: Atmospheres, 126, e2021JD034683. https://doi.org/10.1029/2021JD034683
  • Rodal, Marie, & Schlutow, Mark (2021). Waves in the gas centrifuge: Asymptotic theory and similarities with the atmosphere. Journal of Fluid Mechanics, 928, A17. https://doi.org/10.1017/jfm.2021.811
  • Schmid, F., Gagarina, E., Klein, R., and U. Achatz, 2021: Towards a numerical laboratory for investigations of gravity-wave mean-flow interactions in the atmosphere. Mon. Wea. Rev. accepted
  • Söder, J., Zülicke, C., Gerding, M., & Lübken, F.-J. (2021). High-resolution observations of turbulence distributions across tropopause folds. Journal of Geophysical Research: Atmospheres, 126, e2020JD033857. https://doi.org/10.1029/2020JD033857
  • Stober, G., Janches, D., Matthias, V., Fritts, D., Marino, J., Moffat-Griffin, T., Baumgarten, K., Lee, W., Murphy, D., Kim, Y. H., Mitchell, N., and Palo, S.: Seasonal evolution of winds, atmospheric tides, and Reynolds stress components in the Southern Hemisphere mesosphere–lower thermosphere in 2019, Ann. Geophys., 39, 1–29, https://doi.org/10.5194/angeo-39-1-2021, 2021.
  • Strelnikova, I., Almowafy, M., Baumgarten, G., Baumgarten, K., Ern, M., Gerding, M., & Lübken, F. (2021). Seasonal Cycle of Gravity Wave Potential Energy Densities from Lidar and Satellite Observations at 54° and 69°N, Journal of the Atmospheric Sciences, 78(4), 1359-1386. https://doi.org/10.1175/JAS-D-20-0247.1
  • Strube, C., Preusse, P., Ern, M., and Riese, M.: Propagation paths and source distributions of resolved gravity waves in ECMWF-IFS analysis fields around the southern polar night jet, Atmos. Chem. Phys., 21, 18641–18668, https://doi.org/10.5194/acp-21-18641-2021, 2021.
  • Vargas, F., Chau, J. L., Charuvil Asokan, H., and Gerding, M.: Mesospheric gravity wave activity estimated via airglow imagery, multistatic meteor radar, and SABER data taken during the SIMONe–2018 campaign, Atmos. Chem. Phys., 21, 13631–13654, https://doi.org/10.5194/acp-21-13631-2021, 2021.
  • Völker, G.S., Akylas T.R. and U. Achatz, 2021: An Application of WKBJ Theory for Triad Interactions of Internal Gravity Waves in Varying Background Flows. Quart. J. Roy. Met. Soc., 147, 1112–1134. https://doi.org/10.1002/qj.3962
  • Wildmann, N., R. Eckert, A. Dörnbrack, S. Gisinger, M. Rapp, K. Ohlmann, A. van Niekerk, 2021: In-situ measurements of wind and turbulence by a motor glider in the Andes. J. Atmos. Ocean. Techn.,38(4), 921-935; https://doi.org/10.1175/JTECH-D-20-0137.1
  • Yigit, E., Medvedev, A. S, and Ern, M. (2021): Effects of Latitude-Dependent Gravity Wave Source Variations on the Middle and Upper Atmosphere, Front. Astron. Space Sci., 7, 614018, https://doi.org/10.3389/fspas.2020.614018

2020:

  • Amiramjadi, M., A. R. Mohebalhojeh, M. Mirzaei, C. Zülicke & R. Plougonven, 2020: The spatio–temporal variability of nonorographic gravity wave energy and relation to its source functions. Mon. Wea. Rev. 148, 12: 4837–4857, https://doi.org/10.1175/MWR-D-20-0195.1
  • Bramberger, M., A. Dörnbrack, H. Wilms, F. Ewald, and R. Sharman, 2020: Mountain-Wave Turbulence Encounter of the Research Aircraft HALO above Iceland. J. Appl. Meteor. Climatol., 59, 567–588, https://doi.org/10.1175/JAMC-D-19-0079.1
  • Chau, J-L-,  J. M. Urco, V. Avsarkisov, J. P. Vierinen, R. Latteck, C. M. Hall und M. Tsutsumi, Four-dimensional quantification of Kelvin-Helmholtz instabilities in the polar summer mesosphere using volumetric radar imaging, Geophys. Res. Lett., 47, https://doi.org/10.1029/2019GL086081, 2020
  • Dörnbrack, A., Kaifler, B., Kaifler, N., Rapp, M., Wildmann, N., Garhammer, M., Ohlman, K., Payne, J., Sandercock, M., and E. Austin, 2020: Unusual appearance of mother-of-pearl clouds above El Calafate, Argentina (50° 21? S, 72° 16? W). Weather, 75, 378-388. https://doi.org/10.1002/wea.3863
  • Gisinger, S., Wagner, J., and Witschas, B., 2020: Airborne measurements and large-eddy simulations of small-scale gravity waves at the tropopause inversion layer over Scandinavia, Atmos. Chem. Phys., 20, 10091–10109, https://doi.org/10.5194/acp-20-10091-2020, 2020
  • Haghighatnasab, M., M. Mirzaei, A.R. Mohebalhojeh, C. Zülicke, and R. Plougonven, 2020: Application of the Compressible, Nonhydrostatic, Balanced Omega Equation in Estimating Diabatic Forcing for Parameterization of Inertia–Gravity Waves: Case Study of Moist Baroclinic Waves Using WRF. J. Atmos. Sci., 77, 113–129, https://doi.org/10.1175/JAS-D-19-0039.1
  • Heale, C. J., Bossert, K., Vadas, S. L., Hoffmann, L., Dörnbrack, A., Stober, G., and J. B. Snively , and C. Jacobi, 2020: Secondary gravity waves generated by breaking mountain waves over Europe. Journal of Geophysical Research: Atmospheres, 125, e2019JD031662. https://doi.org/10.1029/2019JD031662
  • He, M., Y. Yamazaki, P. Hoffmann, C. Hall, M. Tsutsumi, G. Li und J. Chau, Zonal wavenumber diagnosis of rossby-wave-like oscillations using paired ground-based radars, J. Geophys. Res., 125, https://doi.org/10.1029/2019JD031599, 2020
  • Kaifler, N., B. Kaifler, A. Dörnbrack, M. Rapp, J. L. Hormaechea, and A. de la Torre, 2020: Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina. Scientific Reports 10, 14529. https://doi.org/10.1038/s41598-020-71443-7
  • Kivi, R., Dörnbrack, A., Sprenger, M., and H. Vömel, 2020: Far-ranging impact of mountain waves excited over Greenland on stratospheric dehydration and rehydration, Journal of Geophysical Research: Atmospheres, 125, e2020JD033055. https://doi.org/10.1029/2020JD033055
  • Krisch, I., Ern, M., Hoffmann, L., Preusse, P., Strube, C., Ungermann, J., Woiwode, W., and Riese, M.: Superposition of gravity waves with different propagation characteristics observed by airborne and space-borne infrared sounders, Atmos. Chem. Phys., 20, 11469–11490, https://doi.org/10.5194/acp-20-11469-2020, 2020
  • Reyes, P.M., E. Kudeki, G. A. Lehmacher, J. L. Chau und M. A. Milla, VIPIR and 50 MHz radar studies of gravity wave signatures in 150-km echoes observed at Jicamarca, J. Geophys. Res., 125, https://doi.org/10.1029/2019JA027535, 2020
  • Rodda, C., and U. Harlander, 2020: Transition from Geostrophic Flows to Inertia–Gravity Waves in the Spectrum of a Differentially Heated Rotating Annulus Experiment. J. Atmos. Sci., 77, 2793–2806, https://doi.org/10.1175/JAS-D-20-0033.1
  • Rodda, C., Hien, S., Achatz, U. et al. A new atmospheric-like differentially heated rotating annulus configuration to study gravity wave emission from jets and fronts. Exp Fluids 61, 2 (2020). https://doi.org/10.1007/s00348-019-2825-z
  • Schlutow, Mark and Wahlén, Erik. "Generalized modulation theory for strongly nonlinear gravity waves in a compressible atmosphere" Mathematics of Climate and Weather Forecasting, vol. 6, no. 1, 2020, pp. 97-112. https://doi.org/10.1515/mcwf-2020-0105
  • Schlutow, Mark and Voelker, Georg S.. "On strongly nonlinear gravity waves in a vertically sheared atmosphere" Mathematics of Climate and Weather Forecasting, vol. 6, no. 1, 2020, pp. 63-74. https://doi.org/10.1515/mcwf-2020-0103
  • Stephan, C. C., Schmidt, H., Zuelicke, C., & Matthias, V. (2020). Oblique gravity wave propagation during sudden stratospheric warmings. Journal of Geophysical Research: Atmospheres, 125, e2019JD031528. https://doi.org/10.1029/2019JD031528
  • G. Stober, K. Baumgarten, J. P. McCormack, P. Brown und J. Czarnecki, Comparative study between ground-based observations and NAVGEM-HA analysis data in the mesosphere and lower thermosphere region, Atmos. Chem. Phys., 11979-12010,https://doi.org/10.5194/acp-20-11979-2020, 2020
  • Strelnikova, I., G. Baumgarten und F.-J. Lübken, Advanced hodograph-based analysis technique to derive gravity-waves parameters from lidar observations, Atmos. Meas. Tech., 13, 479-499, https://doi.org/10.5194/amt-13-479-2020, 2020
  • Strube, C., Ern, M., Preusse, P., and Riese, M.: Removing spurious inertial instability signals from gravity wave temperature perturbations using spectral filtering methods, Atmos. Meas. Tech., 13, 4927–4945, https://doi.org/10.5194/amt-13-4927-2020, 2020
  • Wilms, H., Bramberger, M., and A. Dörnbrack, 2020: Observation and Simulation of Mountain Wave Turbulence above Iceland: Turbulence Intensification due to Wave Interference. Q. J. R. Met. Soc., 1– 21. https://doi.org/10.1002/qj.3848

2019:

  • Baumgarten, K. and Stober, G.: On the evaluation of the phase relation between temperature and wind tides based on ground-based measurements and reanalysis data in the middle atmosphere, Ann. Geophys., 37, 581–602, https://doi.org/10.5194/angeo-37-581-2019, 2019.
  • S. Borchert, G. Zhou, M. Baldauf, H. Schmidt, G. Zängl and D. Reinert. The upper-atmosphere extension of the ICON general circulation model (version: ua-icon-1.0). Geosci. Model Dev., 12, 3541-3569, https://doi.org/10.5194/gmd-12-3541-2019, 2019
  • Pütz, C., Schlutow, M. and Klein, R.: Initiation of ray tracing models: evolution of small-amplitude gravity wave packets in non-uniform background. Theor. Comput. Fluid Dyn. (2019) 33: 509-535; https://doi.org/10.1007/s00162-019-00504-z
  • Chen, D., Strube, C., Ern, M., Preusse, P., and Riese, M.: Global analysis for periodic variations in gravity wave squared amplitudes and momentum fluxes in the middle atmosphere, Ann. Geophys., 37, 487-506, https://doi.org/10.5194/angeo-37-487-2019, 2019.
  • Reichert, R., Kaifler, B., Kaifler, N., Rapp, M., Pautet, P.-D., Taylor, M. J., Kozlovsky, A., Lester, M., and Kivi, R.: Retrieval of intrinsic mesospheric gravity wave parameters using lidar and airglow temperature and meteor radar wind data, Atmos. Meas. Tech., 12, 5997–6015, https://doi.org/10.5194/amt-12-5997-2019, 2019
  • Schlutow, M., Wahlén, E. & Birken, P. (2019). Spectral stability of nonlinear gravity waves in the atmosphere. Mathematics of Climate and Weather Forecasting, 5(1), pp. 12-33. 2019, https://doi.org/10.1515/mcwf-2019-0002
  • Schlutow, M., 2019: Modulational Stability of Nonlinear Saturated Gravity Waves. J. Atmos. Sci., 76, 3327–3336, https://doi.org/10.1175/JAS-D-19-0065.1
  • Stephan, C.C., C. Strube, D. Klocke, M. Ern, L. Hoffmann, P. Preusse, and H. Schmidt, 2019: Intercomparison of Gravity Waves in Global Convection-Permitting Models. J. Atmos. Sci., 76, 2739–2759, https://doi.org/10.1175/JAS-D-19-0040.1
  • Stephan, C. C., Strube, C., Klocke, D., Ern, M., Hoffmann, L., Preusse, P., & Schmidt, H. ( 2019). Gravity waves in global high‐resolution simulations with explicit and parameterized convection. Journal of Geophysical Research: Atmospheres, 124, 4446– 4459. https://doi.org/10.1029/2018JD030073
  • Sutherland, B.R., Achatz, U., Caulfield, C. and Klymak, J. M., 2019: Recent progress in modeling imbalance in the atmosphere and ocean. Phys. Rev. Fluids 4, 010501 , January 2019; https://doi.org/10.1103/PhysRevFluids.4.010501
  • Söder, J., Gerding, M., Schneider, A., Dörnbrack, A., Wilms, H., Wagner, J., and Lübken, F.-J.: Evaluation of wake influence on high-resolution balloon-sonde measurements, Atmos. Meas. Tech., 12, 4191–4210, https://doi.org/10.5194/amt-12-4191-2019, 2019
  • Wei, J., G. Bölöni, and U. Achatz, 2019: Efficient Modeling of the Interaction of Mesoscale Gravity Waves with Unbalanced Large-Scale Flows: Pseudomomentum-Flux Convergence versus Direct Approach. J. Atmos. Sci., 76, 2715–2738, https://doi.org/10.1175/JAS-D-18-0337.1
  • Wilhelm, S., Stober, G., and Brown, P.: Climatologies and long-term changes in mesospheric wind and wave measurements based on radar observations at high and mid latitudes, Ann. Geophys., 37, 851–875, https://doi.org/10.5194/angeo-37-851-2019, 2019
  • Wörl, R., Strelnikov, B., Viehl, T. P., Höffner, J., Pautet, P.-D., Taylor, M. J., Zhao, Y., and Lübken, F.-J.: Thermal structure of the mesopause region during the WADIS-2 rocket campaign, Atmos. Chem. Phys., 19, 77–88, https://doi.org/10.5194/acp-19-77-2019, 2019.

2018:

  • Baumgarten, K., Gerding, M., Baumgarten, G., and Lübken, F.-J.: Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding, Atmos. Chem. Phys., 18, 371–384, https://doi.org/10.5194/acp-18-371-2018, 2018.
  • Bramberger, M., A. Dörnbrack, H. Wilms, S. Gemsa, K. Raynor, and R. Sharman, 2018: Vertically Propagating Mountain Waves—A Hazard for High-Flying Aircraft?. J. Appl. Meteor. Climatol., 57, 1957–1975, https://doi.org/10.1175/JAMC-D-17-0340.1
  • Dörnbrack, A., Gisinger, S., Kaifler, N., Portele, T. C., Bramberger, M., Rapp, M., Gerding, M., Söder, J., Žagar, N., and Jelić, D.: Gravity waves excited during a minor sudden stratospheric warming, Atmos. Chem. Phys., 18, 12915-12931, https://doi.org/10.5194/acp-18-12915-2018, 2018.
  • Ern, M., Trinh, Q. T., Preusse, P., Gille, J. C., Mlynczak, M. G., Russell III, J. M., and Riese, M.: GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings, Earth Syst. Sci. Data, 10, 857-892, https://doi.org/10.5194/essd-10-857-2018, 2018. pdf
    • Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C; Mlynczak, Martin G; Russell III, James M; Riese, Martin (2017): GRACILE: A comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings, link to data in NetCDF format. PANGAEA, https://doi.org/10.1594/PANGAEA.879658 download
  • Ghasemi, A., Klein, M., Will, A., & Harlander, U. (2018). Mean flow generation by an intermittently unstable boundary layer over a sloping wall. Journal of Fluid Mechanics, 853, 111-149. https://doi.org/10.1017/jfm.2018.552
  • U. Harlander, I. D. Borcia & A. Krebs (2019) Non-normality increases variance of gravity waves trapped in a tilted box, Geophysical & Astrophysical Fluid Dynamics, 113:5-6, 602-622, https://doi.org/10.1080/03091929.2018.1549660
  • Hien, S., J. Rolland, S. Borchert, L. Schoon, C. Zülicke & U. Achatz, 2018: Spontaneous inertia–gravity wave emission in the differentially heated rotating annulus experiment. J. Fluid Mech. 838: 5-41, https://doi.org/10.1017/jfm.2017.883.
  • Krisch, I., Ungermann, J., Preusse, P., Kretschmer, E., and Riese, M.: Limited angle tomography of mesoscale gravity waves by the infrared limb-sounder GLORIA, Atmos. Meas. Tech., 11, 4327-4344, https://doi.org/10.5194/amt-11-4327-2018, 2018
  • Portele, T.C., A. Dörnbrack, J.S. Wagner, S. Gisinger, B. Ehard, P. Pautet, and M. Rapp, 2018: Mountain-Wave Propagation under Transient Tropospheric Forcing: A DEEPWAVE Case Study. Mon. Wea. Rev., 146, 1861–1888, https://doi.org/10.1175/MWR-D-17-0080.1
  • Pedatella, N. M., J. L. Chau, H. Schmidt, L. P. Goncharenko, C. Stolle, K. Hocke, V. L. Harvey, B. Funke, and T. A. Siddiqui (2018), How sudden stratospheric warming affects the whole atmosphere, Eos, 99, https://doi.org/10.1029/2018EO092441
  • Rapp, M., Dörnbrack, A., and Kaifler, B. 2018: An intercomparison of stratospheric gravity wave potential energy densities from METOP GPS radio occultation measurements and ECMWF model data, Atmos. Meas. Tech., 11, 1031-1048, https://doi.org/10.5194/amt-11-1031-2018, 2018.
  • Rapp, M., Dörnbrack, A., & Preusse, P. (2018). Large midlatitude stratospheric temperature variability caused by inertial instability: A potential source of bias for gravity wave climatologies. Geophysical Research Letters, 45, 10,682–10,690. https://doi.org/10.1029/2018GL079142
  • C. Rodda, I. D. Borcia, P. Le Gal, M. Vincze & U. Harlander (2018) Baroclinic, Kelvin and inertia-gravity waves in the barostrat instability experiment, Geophysical & Astrophysical Fluid Dynamics, 112:3, 175-206, https://doi.org/10.1080/03091929.2018.1461858
  • Schoon, L. and Zülicke, C.: A novel method for the extraction of local gravity wave parameters from gridded three-dimensional data: description, validation, and application, Atmos. Chem. Phys., 18, 6971-6983, https://doi.org/10.5194/acp-18-6971-2018, 2018.
  • Von Larcher, T., Viazzo, S., Harlander, U., Vincze, M., & Randriamampianina, A. (2018). Instabilities and small-scale waves within the Stewartson layers of a thermally driven rotating annulus. Journal of Fluid Mechanics, 841, 380-407. doi:10.1017/jfm.2018.10
  • Wilhelm, J., T.R. Akylas, G. Bölöni, J. Wei, B. Ribstein, R. Klein, and U. Achatz, 2018: Interactions between Mesoscale and Submesoscale Gravity Waves and Their Efficient Representation in Mesoscale-Resolving Models. J. Atmos. Sci., 75, 2257–2280, https://doi.org/10.1175/JAS-D-17-0289.1
  • Woiwode, W., Dörnbrack, A., Bramberger, M., Friedl-Vallon, F., Haenel, F., Höpfner, M., Johansson, S., Kretschmer, E., Krisch, I., Latzko, T., Oelhaf, H., Orphal, J., Preusse, P., Sinnhuber, B.-M., and Ungermann, J.: Mesoscale fine structure of a tropopause fold over mountains, Atmos. Chem. Phys., 18, 15643-15667, https://doi.org/10.5194/acp-18-15643-2018, 2018.
  • Zülicke, C., E. Becker, V. Matthias, D.H. Peters, H. Schmidt, H. Liu, L.d. Ramos, and D.M. Mitchell, 2018: Coupling of Stratospheric Warmings with Mesospheric Coolings in Observations and Simulations. J. Climate, 31, 1107–1133, https://doi.org/10.1175/JCLI-D-17-0047.1

2017:

  • Baumgarten, K., M. Gerding, and F.-J. Lübken (2017), Seasonal variation of gravity wave parameters using different filter methods with daylight lidar measurements at mid-latitudes, J. Geophys. Res., 122, 2683-2695, doi:10.1002/2016JD025916 , 2017
  • Dörnbrack, A., S. Gisinger, and B. Kaifler (2017), On the interpretation of gravity wave measurements by groundbased lidars, Atmosphere, 8 (1-22), doi: 10.3390/atmos8030049 link . (GW-TP /PACOG)
  • Dörnbrack, A., S. Gisinger, M. C. Pitts, L. R. Poole, and M. Maturilli,2017: Multilevel cloud structures over Svalbard, Mon. Weather Rev., 145, 1149-1159, doi: 10.1175/MWR-D-16-0214.1 link
  • Ehard, B., B. Kaifler, A. Dörnbrack, P. Preusse, S. Eckermann, M. Bramberger, S. Gisinger, N. Kaifler, B. Liley, J. Wagner, and M. Rapp, 2017: Horizontal propagation of large amplitude mountain waves in the vicinity of the polar night jet. J. Geophys. Res. Atmos., 122, 1423– 1436, doi:10.1002/2016JD025621.(PACOG, SV cooperation)
  • Gerber, S. & I. Horenko, 2017: Toward a direct and scalable identification of reduced models for categorical processes. Proc. Natl. Acad. Sci. USA 114, 19: 4863-4868, doi:10.1073/pnas.1612619114, link
  • Gisinger, S., A. Dörnbrack, V. Matthias, J. D. Doyle, S. D. Eckermann, B. Ehard, L. Hoffmann, B. Kaifler, C. G. Kruse, and M. Rapp, 2017: Atmospheric Conditions during the Deep Propagating Gravity Wave Experiment (DEEPWAVE), Mon. Wea. Rev. 145, 4249-4275. abstract
  • Horenko, I., S. Gerber, T. J. O'Kane, J. S. Risbey, D. P. Monselesan, C. L. E. Franzke & T. J. Okane, 2017: On Inference and Validation of Causality Relations in Climate Teleconnections. Nonlinear and Stochastic Climate Dynamics, C. Franzke, and T. O'Kane, Eds., Cambridge University Press: 184-208, doi:10.1017/9781316339251.008; ISBN: 9781107118140
  • N. Kaifler, B. Kaifler, B. Ehard, S. Gisinger, A. Dörnbrack, M. Rapp, R. Kivi, A. Kozlovsky, M. Lester, B. Liley, 2017: Observational indications of downward-propagating gravity waves in middle atmosphere lidar data. Journal of Atmospheric and Solar-Terrestrial Physics162,16-27, https://doi.org/10.1016/j.jastp.2017.03.003.
  • Krisch, I., Preusse, P., Ungermann, J., Dörnbrack, A., Eckermann, S. D., Ern, M., Friedl-Vallon, F., Kaufmann, M., Oelhaf, H., Rapp, M., Strube, C., and Riese, M.: First tomographic observations of gravity waves by the infrared limb imager GLORIA, Atmos. Chem. Phys., 17, 14937-14953, https://doi.org/10.5194/acp-17-14937-2017, 2017 pdf
  • Mirzaei, M., A.R. Mohebalhojeh, C. Zülicke, and R. Plougonven, 2017: On the Quantification of Imbalance and Inertia–Gravity Waves Generated in Numerical Simulations of Moist Baroclinic Waves Using the WRF Model. J. Atmos. Sci., 74, 4241–4263, https://doi.org/10.1175/JAS-D-16-0366.1
  • O’Kane, T. J., D. P. Monselesan, J. S. Risbey, I. Horenko & C. L. E. Franzke, 2017: Research Article. On memory, dimension, and atmospheric teleconnections. Mathematics of Climate and Weather Forecasting, 3(1), pp. 1-27. DOI: https://doi.org/10.1515/mcwf-2017-0001
  • Risbey, J. S., O'Kane, T. J., Monselesan, D. P., Franzke, C. L. E., & Horenko, I. ( 2018). On the dynamics of Austral heat waves. Journal of Geophysical Research: Atmospheres, 123, 38– 57. https://doi.org/10.1002/2017JD027222
  • G. Rüdiger, T. Seelig, M. Schultz, M. Gellert, Ch. Egbers & U. Harlander (2017) The stratorotational instability of Taylor-Couette flows with moderate Reynolds numbers, Geophysical & Astrophysical Fluid Dynamics, 111:6, 429-447, https://doi.org/10.1080/03091929.2017.1382487
  • Schlutow, M.; Klein, R.; Achatz, U., 2017: Finite-amplitude gravity waves in the atmosphere: traveling wave solutions, J. Fluid Mech., 826, 1034 - 1065 https://doi.org/10.1017/jfm.2017.459
  • Schneider, A., J. Wagner, J. Söder, M. Gerding und F.-J. Lübken (2017), Case study of wave breaking with high-resolution turbulence measurements with LITOS and WRF simulations, Atmos. Chem. Phys., abstract.
  • Schneider, A., Wagner, J., Söder, J., Gerding, M., and Lübken, F.-J., 2017: Case study of wave breaking with high-resolution turbulence measurements with LITOS and WRF simulations, Atmos. Chem. Phys., 17, 7941–7954, https://doi.org/10.5194/acp-17-7941-2017
  • Vincze, M., Borcia, I.D. & Harlander, U. Temperature fluctuations in a changing climate: an ensemble-based experimental approach. Sci Rep 7, 254 (2017) doi:10.1038/s41598-017-00319-0
  • Wagner, J., Dörnbrack, A., Rapp, M., Gisinger, S., Ehard, B., Bramberger, M., Witschas, B., Chouza, F., Rahm, S., Mallaun, C., Baumgarten, G., and Hoor, P., 2017: Observed versus simulated mountain waves over Scandinavia – improvement of vertical winds, energy and momentum fluxes by enhanced model resolution?, Atmos. Chem. Phys., 17, 4031-4052, doi:10.5194/acp-17-4031-2017, link

2016:

  • Achatz, U., Ribstein, B., Senf, F., and Klein, R. 2016: The interaction  between synoptic-scale balanced flow and a finite-amplitude mesoscale wave field throughout all atmospheric layers: Weak and moderately strong  stratification. Q. J. R. Met. Soc. vol. 143 (2017), pp. 342–361 abstract
  • Bölöni, G., B. Ribstein, J. Muraschko, C. Sgoff, J. Wei, and U. Achatz, 2016: The Interaction between Atmospheric Gravity Waves and Large-Scale Flows: An Efficient Description beyond the Nonacceleration Paradigm. J. Atmos. Sci., 73, 4833–4852, https://doi.org/10.1175/JAS-D-16-0069.1
  • Ehard, B., P. Achtert, A. Dörnbrack, S. Gisinger, J. Gumbel, M. Khaplanov, M. Rapp, and J. Wagner, 2016: Combination of Lidar and Model Data for Studying Deep Gravity Wave Propagation. Mon. Wea. Rev., 144, 77–98, https://doi.org/10.1175/MWR-D-14-00405.1
  • Ern, M., Trinh, Q. T., Kaufmann, M., Krisch, I., Preusse, P., Ungermann, J., Zhu, Y., Gille, J. C., Mlynczak, M. G., Russell III, J. M., Schwartz, M. J., and Riese, M., 2016: Satellite observations of middle atmosphere gravity wave absolute momentum flux and of its vertical gradient during recent stratospheric warmings, Atmos. Chem. Phys., 16, 9983-10019, doi:10.5194/acp-16-9983-2016. pdf
  • Kalisch, S., H.-Y. Chun, M. Ern, P. Preusse, Q. T. Trinh, S. D. Eckermann, and M. Riese, 2016: Comparison of simulated and observed convective gravity waves, J. Geophys. Res. Atmos., 121, 13474–13492, doi:10.1002/2016JD025235. pdf
  • Lübken, F.-J., R. Latteck, E. Becker, J. Höffner, and D. Murphy, 2016: Using polar mesosphere summer echoes and stratospheric/mesospheric winds to explain summer mesopause jumps in Antarctica. J. Atmos. Solar-Terr. Phys. doi: 10.1016/j.jastp.2016.06.008 abstract
  • Matthias, V. and Ern, M.: On the origin of the mesospheric quasi-stationary planetary waves in the unusual Arctic winter 2015/2016, Atmos. Chem. Phys., 18, 4803-4815, https://doi.org/10.5194/acp-18-4803-2018, 2018. pdf
  • Meraner, K., H. Schmidt, E. Manzini, B. Funke, and A. Gardini (2016), Sensitivity of simulated mesospheric transport of nitrogen oxides to parameterized gravity waves. J. Geophys. Res., 121(20). abstract
  • Ribstein, B. and  U. Achatz, 2016: The interaction between gravity waves and solar tides in a linear tidal model with a 4D ray-tracing gravity-wave parameterization. J. Geophys. Res., 121, https://doi.org/10.1002/2016JA022478 abstract
  • Trinh, Q. T., Kalisch, S., Preusse, P., Ern, M., Chun, H.–Y., Eckermann, S. D., Kang, M.–J., and Riese, M., 2016: Tuning of a convective gravity wave source scheme based on HIRDLS observations, Atmos. Chem. Phys., 16, 7335-7356, doi:10.5194/acp-16-7335-2016. pdf
  • Vincze, M., I. Borcia, U. Harlander and P. Le Gal, 2016: Double-diffusive convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability, Fluid Dyn. Res., 48, 061414. abstract

2015:

  • Ehard, B., Kaifler, B., Kaifler, N., and Rapp, M., 2015: Evaluation of methods for gravity wave extraction from middle-atmospheric lidar temperature measurements, Atmos. Meas. Tech., 8, 4645-4655, doi:10.5194/amt-8-4645-2015. abstract
  • Fritts, D. C., M. Taylor, A. Dörnbrack, M. Rapp, B. Kaifler, and S. Gisinger (2015), The deep propagating gravity wave experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere, Bulletin of the American Meteorological Society, doi: 10.1175/BAMS-D-14-00269 link
  • Kaifler, B., N. Kaifler, B. Ehard, A. Dörnbrack, M. Rapp, and D. C. Fritts. 2015: Influences of source conditions on mountain wave penetration into the stratosphere and mesosphere, Geophys. Res. Lett., 42, 9488{9494, doi: 10.1002/2015GL066465 abstract
  • Ribstein, B., U. Achatz, and F. Senf, 2015: The interaction between gravity waves and solar tides: Results from 4-D ray tracing coupled to a linear tidal model, J. Geophys. Res. Space Physics, 120, 6795–6817, doi:10.1002/2015JA021349. abstract

Data sets

to paper of Ern et al. , 2018:

  • Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C; Mlynczak, Martin G; Russell III, James M; Riese, Martin (2017): GRACILE: A comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings, link to data in NetCDF format. PANGAEA, https://doi.org/10.1594/PANGAEA.879658 download

Publications sorted by projects