sample research paper abstract agricultural farming business plan abdulaziz ghuloum dissertation nse homework helpline national geographic on assignment

Spontaneous Imbalance (SI) - Publications

Latest:

  • Becker, E., Vadas, S. L., Bossert, K., Harvey, V. L., Zülicke, C., & Hoffmann, L. (2022). A High-resolution whole-atmosphere model with resolved gravity waves and specified large-scale dynamics in the troposphere and stratosphere. Journal of Geophysical Research: Atmospheres, 127, e2021JD035018. https://doi.org/10.1029/2021JD035018
  • Harlander,U. & M. V. Kurgansky (2021): Two-dimensional internal gravity wave beam instability. Linear theory and subcritical instability, Geophysical & Astrophysical Fluid Dynamics, https://doi.org/10.1080/03091929.2021.1943379
  • Schmid, F., Gagarina, E., Klein, R., and U. Achatz, 2021: Towards a numerical laboratory for investigations of gravity-wave mean-flow interactions in the atmosphere. Mon. Wea. Rev. accepted

Alphabetic Order:

  1. Achatz, U., Ribstein, B., Senf, F., and Klein, R., 2016: The interaction  between synoptic-scale balanced flow and a finite-amplitude mesoscale wave field throughout all atmospheric layers: Weak and moderately strong  stratification. Q. J. R. Met. Soc. vol. 143 (2017), pp. 342–361 https://doi.org/10.1002/qj.2926
  2. Amiramjadi, M., A. R. Mohebalhojeh, M. Mirzaei, C. Zülicke & R. Plougonven, 2020: The spatio–temporal variability of nonorographic gravity wave energy and relation to its source functions. Mon. Wea. Rev. 148, 12: 4837–4857, https://doi.org/10.1175/MWR-D-20-0195.1.
  3. Bölöni, G.,  Ribstein, B., Muraschko, J., Sgoff, C., Wei, J. and U. Achatz 2016: The interaction between atmospheric gravity waves and large-scale flows: an efficient description beyond the non-acceleration paradigm. J. Atmos. Sci. vol. 73 (2016), pp. 4833–4852 https://doi.org/10.1175/JAS-D-16-0069.1
  4. Gerber, S. & I. Horenko, 2017: Toward a direct and scalable identification of reduced models for categorical processes. Proc. Natl. Acad. Sci. USA 114, 19: 4863-4868, https://doi.org/10.1073/pnas.1612619114, link.
  5. Geldenhuys, M., P. Preusse, I. Krisch, C. Zülicke, J. Ungermann, M. Ern, F. Friedl-Vallon & M. Riese, 2021: Orographically-Induced Spontaneous Imbalance within the Jet Causing a Large Scale Gravity Wave Event. Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1289.
  6. Ghasemi,A., V, M. Klein, A. Will, and U. Harlander. Mean flow generation by an intermittently unstable boundary layer over a sloping wall. J. Fluid Mech., 853, 111-149, 2018 https://doi.org/10.1017/jfm.2018.552
  7. Haghighatnasab, M., M. Mirzaei, A.R. Mohebalhojeh, C. Zülicke, and R. Plougonven, 2020: Application of the Compressible, Nonhydrostatic, Balanced Omega Equation in Estimating Diabatic Forcing for Parameterization of Inertia–Gravity Waves: Case Study of Moist Baroclinic Waves Using WRF. J. Atmos. Sci., 77, 113–129, https://doi.org/10.1175/JAS-D-19-0039.1
  8. Harlander,U. & M. V. Kurgansky (2021): Two-dimensional internal gravity wave beam instability. Linear theory and subcritical instability, Geophysical & Astrophysical Fluid Dynamics, https://doi.org/10.1080/03091929.2021.1943379
  9. Harlander,U.,  I. D. Borcia & A. Krebs (2018): Non-normality increases variance of gravity waves trapped in a tilted box, Geophysical & Astrophysical Fluid Dynamics,  https://doi.org/10.1080/03091929.2018.1549660
  10. Hien, S., J. Rolland, S. Borchert, L. Schoon, C. Zülicke & U. Achatz, 2018: Spontaneous inertia–gravity wave emission in the differentially heated rotating annulus experiment. J. Fluid Mech. 838: 5-41, https://doi.org/10.1017/jfm.2017.883.
  11. Horenko, I., S. Gerber, T. J. O'Kane, J. S. Risbey, D. P. Monselesan, C. L. E. Franzke & T. J. Okane, 2017: On Inference and Validation of Causality Relations in Climate Teleconnections. Nonlinear and Stochastic Climate Dynamics, C. Franzke, and T. O'Kane, Eds., Cambridge University Press: 184-208,  https://doi.org/10.1017/9781316339251.008
  12. Larcher, T. v., S. Viazzo, U. Harlander, M. Vincze & A. Randriamampianina, 2018: Instabilities and small-scale waves within the Stewartson layers of a thermally driven rotating annulus. J. Fluid Mech. 841: 380-407, https://doi.org/10.1017/jfm.2018.10 .
  13. Le Gal, P., Harlander, U., Borcia, I., Le Dizès, S., Chen, J., & Favier, B. (2021). Instability of vertically stratified horizontal plane Poiseuille flow. Journal of Fluid Mechanics, 907, R1. https://doi.org/10.1017/jfm.2020.917
  14. Mirzaei, M., A. R. Mohebalhojeh,C. Zülicke & R. Plougonven, 2017: On the quantification of imbalance and inertia-gravity waves generated in numerical simulations of moist baroclinic waves using the WRF model. J. Atmos. Sci. 74: 4241-4263, https://doi.org/10.1175/JAS-D-16-0366.1
  15. O’Kane, T. J., D. P. Monselesan, J. S. Risbey, I. Horenko & C. L. E. Franzke, 2017: Research Article. On memory, dimension, and atmospheric teleconnections. Math. Clim. Weather Forecast. 3, 1: 1-27, https://doi.org/10.1515/mcwf-2017-0001
  16. Risbey, J. S., O'Kane, T. J., Monselesan, D. P., Franzke, C. L. E., & Horenko, I. ( 2018). On the dynamics of Austral heat waves. Journal of Geophysical Research: Atmospheres, 123, 38– 57. https://doi.org/10.1002/2017JD027222.
  17. Rodda, C.,  I. D. Borcia, P. Le Gal, M. Vincze & U. Harlander (2018) Baroclinic, Kelvin and inertia-gravity waves in the barostrat instability experiment, Geophysical & Astrophysical Fluid Dynamics, 112:3, 175-206, https://doi.org/10.1080/03091929.2018.1461858
  18. Rodda, C., and U. Harlander, 2020: Transition from Geostrophic Flows to Inertia–Gravity Waves in the Spectrum of a Differentially Heated Rotating Annulus Experiment. J. Atmos. Sci., 77, 2793–2806, https://doi.org/10.1175/JAS-D-20-0033.1
  19. Rodda, C., S. Hien, U. Achatz & U. Harlander, 2020: A new atmospheric-like differentially heated rotating annulus configuration to study gravity wave emission from jets and fronts. Exp. Fluids 61: 2, https://doi.org/10.1007/s00348-019-2825-z.
  20. Rüdiger, G;  T. Seelig, M. Schultz, M. Gellert, Ch. Egbers & U. Harlander, 2017: The stratorotational instability of Taylor-Couette flows with moderate Reynolds numbers, Geophysical & Astrophysical Fluid Dynamics, https://doi.org/10.1080/03091929.2017.1382487
  21. Schmid, F., Gagarina, E., Klein, R., and U. Achatz, 2021: Towards a numerical laboratory for investigations of gravity-wave mean-flow interactions in the atmosphere. Mon. Wea. Rev. accepted
  22. Schoon, L. and Zülicke, C., 2018: A novel method for the extraction of local gravity wave parameters from gridded three-dimensional data: description, validation, and application, Atmos. Chem. Phys., 18, 6971-6983, https://doi.org/10.5194/acp-18-6971-2018
  23. Söder, J., C. Zülicke, M. Gerding & F.-J. Lübken, 2021: High-resolution observations of turbulence distributions across tropopause folds. J. Geophys. Res. Atmos.: in press, https://doi.org/10.1029/2020JD033857.
  24. Stephan, C. C., Schmidt, H., Zuelicke, C., & Matthias, V. (2020). Oblique gravity wave propagation during sudden stratospheric warmings. Journal of Geophysical Research: Atmospheres, 125, e2019JD031528. https://doi.org/10.1029/2019JD031528
  25. Sutherland, B.R., Achatz, U., Caulfield, C. and Klymak, J. M., 2019: Recent progress in modeling imbalance in the atmosphere and ocean. Phys. Rev. Fluids 4, 010501 , January 2019;  https://doi.org/10.1103/PhysRevFluids.4.010501
  26. Vincze, M., I. Borcia and U. Harlander, 2017: Temperature fluctuations in a changing climate: an ensemble-based experimental approach, Scientific Reports, 7 / 254, https://doi.org/10.1038/s41598-017-00319-0
  27. Zülicke, C., E. Becker, V. Matthias, D. H. W. Peters, H. Schmidt, H.-L. Liu, L. de la Torre Ramos & D. M. Mitchell, 2018: Coupling of stratospheric warmings with mesospheric coolings in observations and simulations. J. Climate 31: 1107-1133, https://doi.org/10.1175/JCLI-D-17-0047.1